Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cell Death Dis ; 15(4): 286, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653992

RESUMEN

The progression of human degenerative and hypoxic/ischemic diseases is accompanied by widespread cell death. One death process linking iron-catalyzed reactive species with lipid peroxidation is ferroptosis, which shows hallmarks of both programmed and necrotic death in vitro. While evidence of ferroptosis in neurodegenerative disease is indicated by iron accumulation and involvement of lipids, a stable marker for ferroptosis has not been identified. Its prevalence is thus undetermined in human pathophysiology, impeding recognition of disease areas and clinical investigations with candidate drugs. Here, we identified ferroptosis marker antigens by analyzing surface protein dynamics and discovered a single protein, Fatty Acid-Binding Protein 5 (FABP5), which was stabilized at the cell surface and specifically elevated in ferroptotic cell death. Ectopic expression and lipidomics assays demonstrated that FABP5 drives redistribution of redox-sensitive lipids and ferroptosis sensitivity in a positive-feedback loop, indicating a role as a functional biomarker. Notably, immunodetection of FABP5 in mouse stroke penumbra and in hypoxic postmortem patients was distinctly associated with hypoxically damaged neurons. Retrospective cell death characterized here by the novel ferroptosis biomarker FABP5 thus provides first evidence for a long-hypothesized intrinsic ferroptosis in hypoxia and inaugurates a means for pathological detection of ferroptosis in tissue.


Asunto(s)
Biomarcadores , Proteínas de Unión a Ácidos Grasos , Ferroptosis , Proteínas de Neoplasias , Proteínas de Unión a Ácidos Grasos/metabolismo , Animales , Humanos , Biomarcadores/metabolismo , Ratones , Hipoxia Encefálica/metabolismo , Hipoxia Encefálica/patología , Ratones Endogámicos C57BL , Peroxidación de Lípido , Masculino
2.
BMC Genomics ; 24(1): 382, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420172

RESUMEN

BACKGROUND: Genomics data is available to the scientific community after publication of research projects and can be investigated for a multitude of research questions. However, in many cases deposited data is only assessed and used for the initial publication, resulting in valuable resources not being exploited to their full depth. MAIN: A likely reason for this is that many wetlab-based researchers are not formally trained to apply bioinformatic tools and may therefore assume that they lack the necessary experience to do so themselves. In this article, we present a series of freely available, predominantly web-based platforms and bioinformatic tools that can be combined in analysis pipelines to interrogate different types of next-generation sequencing data. Additionally to the presented exemplary route, we also list a number of alternative tools that can be combined in a mix-and-match fashion. We place special emphasis on tools that can be followed and used correctly without extensive prior knowledge in programming. Such analysis pipelines can be applied to existing data downloaded from the public domain or be compared to the results of own experiments. CONCLUSION: Integrating transcription factor binding to chromatin (ChIP-seq) with transcriptional output (RNA-seq) and chromatin accessibility (ATAC-seq) can not only assist to form a deeper understanding of the molecular interactions underlying transcriptional regulation but will also help establishing new hypotheses and pre-testing them in silico.


Asunto(s)
Biología Computacional , Genómica , Biología Computacional/métodos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Inmunoprecipitación de Cromatina , RNA-Seq
3.
Nat Protoc ; 18(5): 1510-1542, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36859615

RESUMEN

The neurovascular unit (NVU), composed of endothelial cells, pericytes, juxtaposed astrocytes and microglia together with neurons, is essential for proper central nervous system functioning. The NVU critically regulates blood-brain barrier (BBB) function, which is impaired in several neurological diseases and is therefore a key therapeutic target. To understand the extent and cellular source of BBB dysfunction, simultaneous isolation and analysis of NVU cells is needed. Here, we describe a protocol for the EPAM-ia method, which is based on flow cytometry for simultaneous isolation and analysis of endothelial cells, pericytes, astrocytes and microglia. This method is based on differential processing of NVU cell types using enzymes, mechanical homogenization and filtration specific for each cell type followed by combining them for immunostaining and fluorescence-activated cell sorting. The gating strategy encompasses cell-type-specific and exclusion markers for contaminating cells to isolate the major NVU cell types. This protocol takes ~6 h for two sets of one or two animals. The isolation part requires experience in animal handling, fresh tissue processing and immunolabeling for flow cytometry. Sorted NVU cells can be used for downstream applications including transcriptomics, proteomics and cell culture. Multiple cell-type analyses using UpSet can then be applied to obtain robust targets from single or multiple NVU cell types in neurological diseases associated with BBB dysfunction. The EPAM-ia method is also amenable to isolation of several other cell types, including cancer cells and immune cells. This protocol is applicable to healthy and pathological tissue from mouse and human sources and to several cell types compared with similar protocols.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Humanos , Ratones , Animales , Citometría de Flujo , Células Endoteliales/fisiología , Barrera Hematoencefálica/metabolismo , Astrocitos , Neuronas
4.
Brain Pathol ; 33(2): e13147, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36599709

RESUMEN

The blood-brain barrier (BBB) is a physiological barrier maintaining a specialized brain micromilieu that is necessary for proper neuronal function. Endothelial tight junctions and specific transcellular/efflux transport systems provide a protective barrier against toxins, pathogens, and immune cells. The barrier function is critically supported by other cell types of the neurovascular unit, including pericytes, astrocytes, microglia, and interneurons. The dysfunctionality of the BBB is a hallmark of neurological diseases, such as ischemia, brain tumors, neurodegenerative diseases, infections, and autoimmune neuroinflammatory disorders. Moreover, BBB dysfunction is critically involved in epilepsy, a brain disorder characterized by spontaneously occurring seizures because of abnormally synchronized neuronal activity. While resistance to antiseizure drugs that aim to reduce neuronal hyperexcitability remains a clinical challenge, drugs targeting the neurovasculature in epilepsy patients have not been explored. The use of novel imaging techniques permits early detection of BBB leakage in epilepsy; however, the detailed mechanistic understanding of causes and consequences of BBB compromise remains unknown. Here, we discuss the current knowledge of BBB involvement in temporal lobe epilepsy with the emphasis on the neurovasculature as a therapeutic target.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Humanos , Epilepsia del Lóbulo Temporal/metabolismo , Barrera Hematoencefálica/patología , Encéfalo/metabolismo , Astrocitos/metabolismo , Epilepsia/patología
5.
Biomedicines ; 11(1)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36672722

RESUMEN

The blood-brain barrier (BBB) is a selectively permeable boundary that separates the circulating blood from the extracellular fluid of the brain and is an essential component for brain homeostasis. In glioblastoma (GBM), the BBB of peritumoral vessels is often disrupted. Pericytes, being important to maintaining BBB integrity, can be functionally modified by GBM cells which induce proliferation and cell motility via the TGF-ß-mediated induction of central epithelial to mesenchymal transition (EMT) factors. We demonstrate that pericytes strengthen the integrity of the BBB in primary endothelial cell/pericyte co-cultures as an in vitro BBB model, using TEER measurement of the barrier integrity. In contrast, this effect was abrogated by TGF-ß or conditioned medium from TGF-ß secreting GBM cells, leading to the disruption of a so far intact and tight BBB. TGF-ß notably changed the metabolic behavior of pericytes, by shutting down the TCA cycle, driving energy generation from oxidative phosphorylation towards glycolysis, and by modulating pathways that are necessary for the biosynthesis of molecules used for proliferation and cell division. Combined metabolomic and transcriptomic analyses further underscored that the observed functional and metabolic changes of TGF-ß-treated pericytes are closely connected with their role as important supporting cells during angiogenic processes.

6.
Sci Rep ; 12(1): 20925, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463381

RESUMEN

Ischemic stroke is a serious neurological disorder that is associated with dysregulation of the neurovascular unit (NVU) and impairment of the blood-brain barrier (BBB). Paradoxically, reperfusion therapies can aggravate NVU and BBB dysfunction, leading to deleterious consequences in addition to the obvious benefits. Using the recently established EPAM-ia method, we identified osteopontin as a target dysregulated in multiple NVU cell types and demonstrated that osteopontin targeting in the early acute phase post-transient middle cerebral artery occlusion (tMCAO) evolves protective effects. Here, we assessed the time course of osteopontin and CD44 receptor expression in NVU cells and examined cerebroprotective effects of osteopontin targeting in early and late acute phases of ischemic stroke. Expression analysis of osteopontin and CD44 receptor post-tMCAO indicated increased levels of both, from early to late acute phases, which was supported by their co-localization in NVU cells. Combined osteopontin targeting in early and late acute phases with anti-osteopontin antibody resulted in further improvement in BBB recovery and edema reduction compared to targeting only in the early acute phase comprising the reperfusion window. Combined targeting led to reduced infarct volumes, which was not observed for the single early acute phase targeting. The effects of the therapeutic antibody were confirmed both in vitro and in vivo in reducing osteopontin and CD44 expression. Osteopontin targeting at the NVU in early and late acute phases of ischemic stroke improves edema and infarct size in mice, suggesting anti-osteopontin therapy as promising adjunctive treatment to reperfusion therapy.


Asunto(s)
Accidente Cerebrovascular Isquémico , Ratones , Animales , Modelos Animales de Enfermedad , Reperfusión , Edema , Infarto
7.
Acta Neuropathol ; 144(2): 305-337, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35752654

RESUMEN

Blood-brain barrier (BBB) dysfunction, characterized by degradation of BBB junctional proteins and increased permeability, is a crucial pathophysiological feature of acute ischemic stroke. Dysregulation of multiple neurovascular unit (NVU) cell types is involved in BBB breakdown in ischemic stroke that may be further aggravated by reperfusion therapy. Therefore, therapeutic co-targeting of dysregulated NVU cell types in acute ischemic stroke constitutes a promising strategy to preserve BBB function and improve clinical outcome. However, methods for simultaneous isolation of multiple NVU cell types from the same diseased central nervous system (CNS) tissue, crucial for the identification of therapeutic targets in dysregulated NVU cells, are lacking. Here, we present the EPAM-ia method, that facilitates simultaneous isolation and analysis of the major NVU cell types (endothelial cells, pericytes, astrocytes and microglia) for the identification of therapeutic targets in dysregulated NVU cells to improve the BBB function. Applying this method, we obtained a high yield of pure NVU cells from murine ischemic brain tissue, and generated a valuable NVU transcriptome database ( https://bioinformatics.mpi-bn.mpg.de/SGD_Stroke ). Dissection of the NVU transcriptome revealed Spp1, encoding for osteopontin, to be highly upregulated in all NVU cells 24 h after ischemic stroke. Upregulation of osteopontin was confirmed in stroke patients by immunostaining, which was comparable with that in mice. Therapeutic targeting by subcutaneous injection of an anti-osteopontin antibody post-ischemic stroke in mice resulted in neutralization of osteopontin expression in the NVU cell types investigated. Apart from attenuated glial activation, osteopontin neutralization was associated with BBB preservation along with decreased brain edema and reduced risk for hemorrhagic transformation, resulting in improved neurological outcome and survival. This was supported by BBB-impairing effects of osteopontin in vitro. The clinical significance of these findings is that anti-osteopontin antibody therapy might augment current approved reperfusion therapies in acute ischemic stroke by minimizing deleterious effects of ischemia-induced BBB disruption.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Barrera Hematoencefálica/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Células Endoteliales , Ratones , Accidente Cerebrovascular/tratamiento farmacológico
8.
EMBO Rep ; 23(6): e54157, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35527520

RESUMEN

Vascular integrity is essential for organ homeostasis to prevent edema formation and infiltration of inflammatory cells. Long non-coding RNAs (lncRNAs) are important regulators of gene expression and often expressed in a cell type-specific manner. By screening for endothelial-enriched lncRNAs, we identified the undescribed lncRNA NTRAS to control endothelial cell functions. Silencing of NTRAS induces endothelial cell dysfunction in vitro and increases vascular permeability and lethality in mice. Biochemical analysis revealed that NTRAS, through its CA-dinucleotide repeat motif, sequesters the splicing regulator hnRNPL to control alternative splicing of tight junction protein 1 (TJP1; also named zona occludens 1, ZO-1) pre-mRNA. Deletion of the hnRNPL binding motif in mice (Ntras∆CA/∆CA ) significantly repressed TJP1 exon 20 usage, favoring expression of the TJP1α- isoform, which augments permeability of the endothelial monolayer. Ntras∆CA/∆CA mice further showed reduced retinal vessel growth and increased vascular permeability and myocarditis. In summary, this study demonstrates that NTRAS is an essential gatekeeper of vascular integrity.


Asunto(s)
ARN Largo no Codificante , Empalme Alternativo , Animales , Células Endoteliales/metabolismo , Ratones , Permeabilidad , Isoformas de Proteínas/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Uniones Estrechas/metabolismo
9.
Science ; 375(6582): eabm4459, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35175798

RESUMEN

The blood-brain barrier (BBB) protects the central nervous system (CNS) from harmful blood-borne factors. Although BBB dysfunction is a hallmark of several neurological disorders, therapies to restore BBB function are lacking. An attractive strategy is to repurpose developmental BBB regulators, such as Wnt7a, into BBB-protective agents. However, safe therapeutic use of Wnt ligands is complicated by their pleiotropic Frizzled signaling activities. Taking advantage of the Wnt7a/b-specific Gpr124/Reck co-receptor complex, we genetically engineered Wnt7a ligands into BBB-specific Wnt activators. In a "hit-and-run" adeno-associated virus-assisted CNS gene delivery setting, these new Gpr124/Reck-specific agonists protected BBB function, thereby mitigating glioblastoma expansion and ischemic stroke infarction. This work reveals that the signaling specificity of Wnt ligands is adjustable and defines a modality to treat CNS disorders by normalizing the BBB.


Asunto(s)
Barrera Hematoencefálica/fisiología , Proteínas Ligadas a GPI/agonistas , Glioblastoma/terapia , Receptores Acoplados a Proteínas G/agonistas , Accidente Cerebrovascular/terapia , Proteínas Wnt/genética , Vía de Señalización Wnt , Animales , Encéfalo/metabolismo , Células Endoteliales/metabolismo , Receptores Frizzled/metabolismo , Glioblastoma/metabolismo , Ligandos , Ratones , Ratones Endogámicos C57BL , Mutagénesis , Sistema Nervioso/embriología , Ingeniería de Proteínas , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Accidente Cerebrovascular/metabolismo , Proteínas Wnt/química , Proteínas Wnt/metabolismo , Xenopus laevis , Pez Cebra
10.
J Neurosci ; 42(10): 1908-1929, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-34903569

RESUMEN

The precise regulation of blood-brain barrier (BBB) permeability for immune cells and blood-borne substances is essential to maintain brain homeostasis. Sphingosine-1-phosphate (S1P), a lipid signaling molecule enriched in plasma, is known to affect BBB permeability. Previous studies focused on endothelial S1P receptors 1 and 2, reporting a barrier-protective effect of S1P1 and a barrier-disruptive effect of S1P2. Here, we present novel data characterizing the expression, localization, and function of the S1P receptor 4 (S1P4) on primary brain microvascular endothelial cells (BMECs). Hitherto, the receptor was deemed to be exclusively immune cell associated. We detected a robust expression of S1P4 in homeostatic murine BMECs (MBMECs), bovine BMECs (BBMECs), and porcine BMECs (PBMECs) and pinpointed its localization to abluminal endothelial membranes via immunoblotting of fractionated brain endothelial membrane fragments. Apical S1P treatment of BMECs tightened the endothelial barrier in vitro, whereas basolateral S1P treatment led to an increased permeability that correlated with S1P4 downregulation. Likewise, downregulation of S1P4 was observed in mouse brain microvessels (MBMVs) after stroke, a neurologic disease associated with BBB impairment. RNA sequencing and qPCR analysis of BMECs suggested the involvement of S1P4 in endothelial homeostasis and barrier function. Using S1P4 knock-out (KO) mice and S1P4 siRNA as well as pharmacological agonists and antagonists of S1P4 both in vitro and in vivo, we demonstrate an overall barrier-protective function of S1P4. We therefore suggest S1P4 as a novel target regulating BBB permeability and propose its therapeutic potential in CNS diseases associated with BBB dysfunction.SIGNIFICANCE STATEMENT Many neurologic diseases including multiple sclerosis and stroke are associated with blood-brain barrier (BBB) impairment and disturbed brain homeostasis. Sphingosine-1-phosphate receptors (S1PRs) are potent regulators of endothelial permeability and pharmacological S1PR modulators are already in clinical use. However, the precise role of S1P for BBB permeability regulation and the function of receptors other than S1P1 and S1P2 therein are still unclear. Our study shows both barrier-disruptive and barrier-protective effects of S1P at the BBB that depend on receptor polarization. We demonstrate the expression and novel barrier-protective function of S1P4 in brain endothelial cells and pinpoint its localization to abluminal membranes. Our work may contribute to the development of novel specific S1PR modulators for the treatment of neurologic diseases associated with BBB impairment.


Asunto(s)
Barrera Hematoencefálica , Receptores de Esfingosina-1-Fosfato , Accidente Cerebrovascular , Animales , Barrera Hematoencefálica/metabolismo , Bovinos , Células Endoteliales/metabolismo , Homeostasis , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Ratones , Ratones Noqueados , Permeabilidad , Fenotipo , Receptores de Lisoesfingolípidos/genética , Esfingosina/metabolismo , Esfingosina/farmacología , Receptores de Esfingosina-1-Fosfato/metabolismo , Accidente Cerebrovascular/metabolismo , Porcinos
11.
Neuropathol Appl Neurobiol ; 47(6): 768-780, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33780024

RESUMEN

AIMS: In primary central nervous system tumours, epithelial-to-mesenchymal transition (EMT) gene expression is associated with increased malignancy. However, it has also been shown that EMT factors in gliomas are almost exclusively expressed by glioma vessel-associated pericytes (GA-Peris). In this study, we aimed to identify the mechanism of EMT in GA-Peris and its impact on angiogenic processes. METHODS: In glioma patients, vascular density and the expression of the pericytic markers platelet derived growth factor receptor (PDGFR)-ß and smooth muscle actin (αSMA) were examined in relation to the expression of the EMT transcription factor SLUG and were correlated with survival of patients with glioblastoma (GBM). Functional mechanisms of SLUG regulation and the effects on primary human brain vascular pericytes (HBVP) were studied in vitro by measuring proliferation, cell motility and growth characteristics. RESULTS: The number of PDGFR-ß- and αSMA-positive pericytes did not change with increased malignancy nor showed an association with the survival of GBM patients. However, SLUG-expressing pericytes displayed considerable morphological changes in GBM-associated vessels, and TGF-ß induced SLUG upregulation led to enhanced proliferation, motility and altered growth patterns in HBVP. Downregulation of SLUG or addition of a TGF-ß antagonising antibody abolished these effects. CONCLUSIONS: We provide evidence that in GA-Peris, elevated SLUG expression is mediated by TGF-ß, a cytokine secreted by most glioma cells, indicating that the latter actively modulate neovascularisation not only by modulating endothelial cells, but also by influencing pericytes. This process might be responsible for the formation of an unstructured tumour vasculature as well as for the breakdown of the blood-brain barrier in GBM.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Pericitos/efectos de los fármacos , Factores de Transcripción de la Familia Snail/efectos de los fármacos , Factor de Crecimiento Transformador beta/farmacocinética , Neoplasias Encefálicas/patología , Movimiento Celular/efectos de los fármacos , Células Endoteliales/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Glioma/tratamiento farmacológico , Glioma/patología , Humanos , Pericitos/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
12.
J Cereb Blood Flow Metab ; 41(1): 132-145, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32054373

RESUMEN

The outcome of stroke is greatly influenced by the state of the blood-brain barrier (BBB). The BBB endothelium is sealed paracellularly by tight junction (TJ) proteins, i.e., claudins (Cldns) and the redox regulator occludin. Functions of Cldn3 and occludin at the BBB are largely unknown, particularly after stroke. We address the effects of Cldn3 deficiency and stress factors on the BBB and its TJs. Cldn3 tightened the BBB for small molecules and ions, limited endothelial endocytosis, strengthened the TJ structure and controlled Cldn1 expression. After middle cerebral artery occlusion (MCAO) and 3-h reperfusion or hypoxia of isolated brain capillaries, Cldn1, Cldn3 and occludin were downregulated. In Cldn3 knockout mice (C3KO), the reduction in Cldn1 was even greater and TJ ultrastructure was impaired; 48 h after MCAO of wt mice, infarct volumes were enlarged and edema developed, but endothelial TJs were preserved. In contrast, junctional localization of Cldn5 and occludin, TJ density, swelling and infarction size were reduced in affected brain areas of C3KO. Taken together, Cldn3 and occludin protect TJs in stroke, and this keeps the BBB intact. However, functional Cldn3, Cldn3-regulated TJ proteins and occludin promote edema and infarction, which suggests that TJ modulation could improve the outcome of stroke.


Asunto(s)
Barrera Hematoencefálica/fisiopatología , Isquemia Encefálica/fisiopatología , Edema/fisiopatología , Accidente Cerebrovascular/fisiopatología , Animales , Humanos , Masculino , Ratones , Uniones Estrechas/metabolismo
13.
Prog Neurobiol ; 199: 101937, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33383106

RESUMEN

Maintenance of the endothelial blood-brain-barrier (BBB) through Wnt/ß-catenin signalling is essential for neuronal function. The cells however, providing Wnt growth factors at the adult neurovascular unit (NVU) are poorly explored. Here we show by conditionally knocking out the evenness interrupted (Evi) gene in astrocytes (EviΔAC) that astrocytic Wnt release is crucial for BBB and NVU integrity. EviΔAC mice developed brain oedema and increased vascular tracer leakage. While brain vascularization and endothelial junctions were not altered in 10 and 40 week-old mice, endothelial caveolin(Cav)-1-mediated vesicle formation was increased in vivo and in vitro. Moreover, astrocytic end-feet were swollen, and aquaporin-4 distribution was disturbed, coinciding with decreased astrocytic Wnt activity. Vascular permeability correlated with increased neuronal activation by c-fos staining, indicative of altered neuronal function. Astrocyte-derived Wnts thus serve to maintain Wnt/ß-catenin activity in endothelia and in astrocytes, thereby controlling Cav-1 expression, vesicular abundance, and end-feet integrity at the NVU.


Asunto(s)
Astrocitos , Barrera Hematoencefálica , Animales , Astrocitos/metabolismo , Barrera Hematoencefálica/metabolismo , Permeabilidad Capilar , Ratones , Proteínas Wnt , beta Catenina/metabolismo
14.
Acta Neuropathol ; 140(2): 183-208, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32529267

RESUMEN

Bacterial meningitis is a deadly disease most commonly caused by Streptococcus pneumoniae, leading to severe neurological sequelae including cerebral edema, seizures, stroke, and mortality when untreated. Meningitis is initiated by the transfer of S. pneumoniae from blood to the brain across the blood-cerebrospinal fluid barrier or the blood-brain barrier (BBB). The underlying mechanisms are still poorly understood. Current treatment strategies include adjuvant dexamethasone for inflammation and cerebral edema, followed by antibiotics. The success of dexamethasone is however inconclusive, necessitating new therapies for controlling edema, the primary reason for neurological complications. Since we have previously shown a general activation of hypoxia inducible factor (HIF-1α) in bacterial infections, we hypothesized that HIF-1α, via induction of vascular endothelial growth factor (VEGF) is involved in transmigration of pathogens across the BBB. In human, murine meningitis brain samples, HIF-1α activation was observed by immunohistochemistry. S. pneumoniae infection in brain endothelial cells (EC) resulted in in vitro upregulation of HIF-1α/VEGF (Western blotting/qRT-PCR) associated with increased paracellular permeability (fluorometry, impedance measurements). This was supported by bacterial localization at cell-cell junctions in vitro and in vivo in brain ECs from mouse and humans (confocal, super-resolution, electron microscopy, live-cell imaging). Hematogenously infected mice showed increased permeability, S. pneumoniae deposition in the brain, along with upregulation of genes in the HIF-1α/VEGF pathway (RNA sequencing of brain microvessels). Inhibition of HIF-1α with echinomycin, siRNA in bEnd5 cells or using primary brain ECs from HIF-1α knock-out mice revealed reduced endothelial permeability and transmigration of S. pneumoniae. Therapeutic rescue using the HIF-1α inhibitor echinomycin resulted in increased survival and improvement of BBB function in S. pneumoniae-infected mice. We thus demonstrate paracellular migration of bacteria across BBB and a critical role for HIF-1α/VEGF therein and hence propose targeting this pathway to prevent BBB dysfunction and ensuing brain damage in infections.


Asunto(s)
Barrera Hematoencefálica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Meningitis Neumocócica , Streptococcus pneumoniae , Migración Transendotelial y Transepitelial/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Barrera Hematoencefálica/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
Front Neurosci ; 14: 280, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32300291

RESUMEN

With increasing distribution of endovascular stroke therapies, transient middle cerebral artery occlusion (tMCAO) in mice now more than ever depicts a relevant patient population with recanalized M1 occlusion. In this case, the desired therapeutic effect of blood flow restauration is accompanied by breakdown of the blood-brain barrier (BBB) and secondary reperfusion injury. The aim of this study was to elucidate short and intermediate-term transcriptional patterns and the involved pathways covering the different cellular players at the neurovascular unit after transient large vessel occlusion. To achieve this, male C57Bl/6J mice were treated according to an intensive post-stroke care protocol after 60 min occlusion of the middle cerebral artery or sham surgery to allow a high survival rate. After 24 h or 7 days, RNA from microvessel fragments from the ipsilateral and the contralateral hemispheres was isolated and used for mRNA sequencing. Bioinformatic analyses allowed us to depict gene expression changes at two timepoints of neurovascular post-stroke injury and regeneration. We validated our dataset by quantitative real time PCR of BBB-associated targets with well-characterized post-stroke dynamics. Hence, this study provides a well-controlled transcriptome dataset of a translationally relevant mouse model 24 h and 7 days after stroke which might help to discover future therapeutic targets in cerebral ischemia/reperfusion injury.

16.
J Exp Clin Cancer Res ; 38(1): 434, 2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31665089

RESUMEN

BACKGROUND: Breast cancer (BC) is the most frequent malignant tumor in females and the 2nd most common cause of brain metastasis (BM), that are associated with a fatal prognosis. The increasing incidence from 10% up to 40% is due to more effective treatments of extracerebral sites with improved prognosis and increasing use of MRI in diagnostics. A frequently administered, potent chemotherapeutic group of drugs for BC treatment are taxanes usually used in the adjuvant and metastatic setting, which, however, have been suspected to be associated with a higher incidence of BM. The aim of our study was to experimentally analyze the impact of the taxane docetaxel (DTX) on brain metastasis formation, and to elucidate the underlying molecular mechanism. METHODS: A monocentric patient cohort was analyzed to determine the association of taxane treatment and BM formation. To identify the specific impact of DTX, a murine brain metastatic model upon intracardial injection of breast cancer cells was conducted. To approach the functional mechanism, dynamic contrast-enhanced MRI and electron microscopy of mice as well as in-vitro transendothelial electrical resistance (TEER) and tracer permeability assays using brain endothelial cells (EC) were carried out. PCR-based, immunohistochemical and immunoblotting analyses with additional RNA sequencing of murine and human ECs were performed to explore the molecular mechanisms by DTX treatment. RESULTS: Taxane treatment was associated with an increased rate of BM formation in the patient cohort and the murine metastatic model. Functional studies did not show unequivocal alterations of blood-brain barrier properties upon DTX treatment in-vivo, but in-vitro assays revealed a temporary DTX-related barrier disruption. We found disturbance of tubulin structure and upregulation of tight junction marker claudin-5 in ECs. Furthermore, upregulation of several members of the tubulin family and downregulation of tetraspanin-2 in both, murine and human ECs, was induced. CONCLUSION: In summary, a higher incidence of BM was associated with prior taxane treatment in both a patient cohort and a murine mouse model. We could identify tubulin family members and tetraspanin-2 as potential contributors for the destabilization of the blood-brain barrier. Further analyses are needed to decipher the exact role of those alterations on tumor metastatic processes in the brain.


Asunto(s)
Antineoplásicos/administración & dosificación , Barrera Hematoencefálica/efectos de los fármacos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/tratamiento farmacológico , Docetaxel/administración & dosificación , Animales , Antineoplásicos/farmacocinética , Neoplasias Encefálicas/genética , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/genética , Línea Celular Tumoral , Claudina-5/genética , Docetaxel/farmacocinética , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Imagen por Resonancia Magnética , Ratones , Microscopía Electrónica , Análisis de Secuencia de ARN , Tubulina (Proteína)/genética , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Cancer Immunol Res ; 7(12): 1910-1927, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31597643

RESUMEN

Glioblastoma (GBM) is a non-T-cell-inflamed cancer characterized by an immunosuppressive microenvironment that impedes dendritic cell maturation and T-cell cytotoxicity. Proangiogenic cytokines such as VEGF and angiopoietin-2 (Ang-2) have high expression in glioblastoma in a cell-specific manner and not only drive tumor angiogenesis and vascular permeability but also negatively regulate T-lymphocyte and innate immune cell responses. Consequently, the alleviation of immunosuppression might be a prerequisite for successful immune checkpoint therapy in GBM. We here combined antiangiogenic and immune checkpoint therapy and demonstrated improved therapeutic efficacy in syngeneic, orthotopic GBM models. We observed that blockade of VEGF, Ang-2, and programmed cell death protein-1 (PD-1) significantly extended survival compared with vascular targeting alone. In the GBM microenvironment, triple therapy increased the numbers of CTLs, which inversely correlated with myeloid-derived suppressor cells and regulatory T cells. Transcriptome analysis of GBM microvessels indicated a global vascular normalization that was highest after triple therapy. Our results propose a rationale to overcome tumor immunosuppression and the current limitations of VEGF monotherapy by integrating the synergistic effects of VEGF/Ang-2 and PD-1 blockade to reinforce antitumor immunity through a normalized vasculature.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Angiopoyetina 2/antagonistas & inhibidores , Antineoplásicos Inmunológicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Bevacizumab/uso terapéutico , Encéfalo/irrigación sanguínea , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/mortalidad , Línea Celular Tumoral , Femenino , Glioblastoma/irrigación sanguínea , Glioblastoma/inmunología , Glioblastoma/mortalidad , Humanos , Tolerancia Inmunológica/efectos de los fármacos , Ratones Endogámicos C57BL
18.
J Cereb Blood Flow Metab ; 39(8): 1460-1468, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31238763

RESUMEN

Glioblastoma is a highly aggressive and treatment resistant primary brain tumor. Features of glioblastoma include peritumoral cerebral edema, the major contributor to neurological impairment. Although the current clinical approach to edema management is administration of the synthetic corticoid dexamethasone, increasing evidence indicates numerous adverse effects of dexamethasone on glioblastoma burden at the molecular, cellular and clinical level. The contradictions of dexamethasone for glioblastoma and brain metastasis therapy are discussed in this article. Finally, alternative strategies for cerebrovascular edema therapy with vascular stabilizing, anti-permeability agents that are either approved or in clinical trials for diabetic retinopathy and macula edema, are addressed.


Asunto(s)
Edema Encefálico/tratamiento farmacológico , Edema Encefálico/etiología , Neoplasias Encefálicas/complicaciones , Dexametasona/efectos adversos , Glioblastoma/complicaciones , Glucocorticoides/efectos adversos , Humanos
19.
J Vis Exp ; (132)2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29553506

RESUMEN

Blood-brain barrier (BBB) is a specialized barrier that protects the brain microenvironment from toxins and pathogens in the circulation and maintains brain homeostasis. The principal sites of the barrier are endothelial cells of the brain capillaries whose barrier function results from tight intercellular junctions and efflux transporters expressed on the plasma membrane. This function is regulated by pericytes and astrocytes that together form the neurovascular unit (NVU). Several neurological diseases such as stroke, Alzheimer's disease (AD), brain tumors are associated with an impaired BBB function. Assessment of the BBB permeability is therefore crucial in evaluating the severity of the neurological disease and the success of the treatment strategies employed. We present here a simple yet robust permeability assay that have been successfully applied to several mouse models both, genetic and experimental. The method is highly quantitative and objective in comparison to the tracer fluorescence analysis by microscopy that is commonly applied. In this method, mice are injected intraperitoneally with a mix of aqueous inert fluorescent tracers followed by anesthetizing the mice. Cardiac perfusion of the animals is performed prior to harvesting brain, kidneys or other organs. Organs are homogenized and centrifuged followed by fluorescence measurement from the supernatant. Blood drawn from the cardiac puncture just before perfusion serves for normalization purpose to the vascular compartment. The tissue fluorescence is normalized to the wet weight and serum fluorescence to obtain a quantitative tracer permeability index. For additional confirmation, the contralateral hemi-brain preserved for immunohistochemistry can be utilized for tracer fluorescence visualization purposes.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Proteínas Fluorescentes Verdes/química , Microscopía Fluorescente/métodos , Animales , Ratones
20.
Invest Ophthalmol Vis Sci ; 59(2): 653-661, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29392309

RESUMEN

Purpose: Neovascularization is a major cause of blindness in various ocular diseases. Bioactive sphingosine 1-phosphate (S1P), synthesized by two sphingosine kinases (Sphk1, Sphk2), emerged as a key player in a multitude of cellular processes, including cell survival, proliferation, inflammation, migration, and angiogenesis. We investigated the role of Sphk2, S1P, and S1P receptors (S1PR) during retinal neovascularization using the oxygen-induced retinopathy mouse model (OIR). Methods: Sphk2 overexpressing (tgSphk2) and Sphk2 knockout (Sphk2-/-) mice were used in the OIR model, exposed to 75% O2 over 5 days from postnatal day (P)7 to 12 to initiate vessel regression. After returning to room air, these mice developed a marked neovascularization. Retinae recovered from untreated and treated eyes at P7, P12, P14, and P17 were used for lectin-stained retinal whole mounts, mass spectrometry, and quantitative real-time PCR. Results: tgSphk2 mice showed higher retinal S1P concentrations, accelerated retinal angiogenesis, and increased neovascularization. Expression of S1PR, vascular endothelial growth factor α (VEGFα), and angiopoietin 1 and 2 was differentially regulated during the course of OIR in the different genotypes. Sphk2-/- displayed a markedly reduced retinal angiogenesis and neovascularization as well as decreased VEGFα and angiopoietin expression. Conclusions: Using genetic models of Sphk2 overexpression or deletion we demonstrate a strong impact of Sphk2/S1P on retinal vasculopathy and expression of vascular growth factors like VEGF and angiopoietin in the retina. Consequently, Sphk2, S1P, and S1PR may offer attractive novel therapeutic targets for ischemic retinopathies.


Asunto(s)
Modelos Animales de Enfermedad , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Neovascularización Retiniana/enzimología , Retinopatía de la Prematuridad/enzimología , Angiopoyetina 1/metabolismo , Angiopoyetina 2/metabolismo , Animales , Cromatografía Liquida , Lisofosfolípidos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Oxígeno/toxicidad , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Lisoesfingolípidos/metabolismo , Retina/metabolismo , Neovascularización Retiniana/patología , Retinopatía de la Prematuridad/inducido químicamente , Retinopatía de la Prematuridad/patología , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Espectrometría de Masas en Tándem , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...